3518 independent reflections 3021 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.050$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(3-acetyl-6-methyl-2-oxo-2H-pyran-4olato)bis(dimethylformamide)copper(II)

Abdelaziz Bouchama,^a Abderrahmen Bendaâs,^a Chaabane Chiter,^a Adel Beghidja^{b*} and Amel Djedouani^a

^aLaboratoire d'Electrochimie des Matériaux Moléculaires et Complexes, Département de Génie des Procédés. Faculté des Science de l'Ingénieur. Université Farhat Abbes de Setif, DZ-19000 Sétif, Algeria, and ^bLaboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et des Mesures Physico-Chimiques, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri de Constantine 25000 Algeria

Correspondence e-mail: a_beghidja@yahoo.fr

Received 3 August 2007; accepted 15 August 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.103; data-to-parameter ratio = 21.9.

The title compound, $[Cu(C_8H_7O_4)_2(C_3H_7NO)_2]$, is a mononuclear copper(II) complex where the Cu^{II} atom, lying on an inversion center, is coordinated in elongated octahedral fashion by six O atoms, four from two 3-acetyl-6-methyl-2oxo-2H-pyran-4-olate ligands in equatorial positions and the remaining two from dimethylformamide molecules in axial positions.

Related literature

For related literature, see: Arndt et al. (1936); Casabó et al. (1987); Djedouani et al. (2006); Gelasco et al. (1997); Zucolotto Chalaça et al. (2002).

Experimental

Crystal data

$Cu(C_8H_7O_4)_2(C_3H_7NO)_2$	$\gamma = 78.852 \ (2)^{\circ}$
$M_r = 544.01$	V = 601.93 (3) Å ³
Friclinic, $P\overline{1}$	Z = 1
a = 7.6894 (2) Å	Mo $K\alpha$ radiation
b = 8.5406 (2) Å	$\mu = 0.97 \text{ mm}^{-1}$
c = 9.3858 (3) Å	T = 173 (2) K
$\alpha = 84.870 \ (1)^{\circ}$	$0.10 \times 0.10 \times 0.10$ mm
$\beta = 86.964 \ (1)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer
Absorption correction: none
8024 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	161 parameters
$wR(F^2) = 0.103$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$
3518 reflections	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu1-O1 Cu1-O4	1.9181 (11) 1.9366 (12)	Cu1-O5	2.4462 (16)
D1-Cu1-O4 D1-Cu1-O5	90.29 (5) 87.44 (6)	O4-Cu1-O5	87.33 (5)

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Nonius, 1998); data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1995); software used to prepare material for publication: PLATON (Spek, 2003).

The authors thank Dr Chahrazed Beghidja for help during crystal selection and X-ray diffraction data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2087).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350
- Arndt, F., Eistert, B., Scholz, H. & Aron, E. (1936). Berichte Teil B, 69, 2373-2380
- Casabó, J., Marquet, J., Moreno-maas, M., Prior, M., Teixidor, F., Florencio, F., Martínez-Carrera, S. & García-Blanco, S. (1987). Polyhedron, 6, 1235-1238.

Djedouani, A., Bendaâs, A., Bouacida, S., Beghidja, A. & Douadi, T. (2006). Acta Cryst. E62, m133-m135.

Dowty, E. (1995). ATOMS. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.

Gelasco, A., Kirk, M. L., Kampf, J. W. & Pecoraro, V. L. (1997). Inorg. Chem. 36, 1829–1837.

Nonius (1998). COLLECT and DENZO. Nonius BV, Delft, The Netherlands. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen. Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13

Zucolotto Chalaça, M., Figueroa-Villar, J. D., Ellena, J. A. & Castellano, E. E. (2002). Inorg. Chim. Acta, 328, 45-52.

supplementary materials

Acta Cryst. (2007). E63, m2397 [doi:10.1107/S1600536807040585]

Bis(3-acetyl-6-methyl-2-oxo-2H-pyran-4-olato)bis(dimethylformamide)copper(II)

A. Bouchama, A. Bendaâs, C. Chiter, A. Beghidja and A. Djedouani

Comment

Dehydroacetic acid DHA, [3-acetyl-6-methyl-2*H*-pyran-2,4(3*H*)-dione], (Arndt *et al.*, 1936) is an industrial product used as a fungicide, bactericide and also as an important intermediate in organic synthesis. However, little is known on its metal complexes; those with Cu and Zn have been reported to be, respectively, a fungicide and a heat stabilizer for vinyl chloride resins. There are some other reports in the patent literature and also the stability constantes of some complexes have been measured. (Casabó *et al.*, 1987). The Cu complex has been already described in this latter report, but the characterization of the compound was based only on thermal and elemental analysis, and on IR and NMR spectroscopy.

As an extension of our work (Djedouani *et al.*, 2006), we present here the synthesis and crystal structure determination of $[Cu(DHA)_2(DMF)_2]$ (I), which molecular structure is illustrated in Fig. 1.

The Cu^{II} center, lying on an inversion center, is coordinated to six oxygen atoms forming an elongated octahedra. The equatorial plane is defined by two DHA ligands, each chelating the metal through two oxygen atoms, O2 and O3, while the two dimethylformamide molecules fill the two axial sites *via* their oxygen atom (O1), in a similar fashion to that observed in other DHA complexes (Zucolotto *et al.*, 2002) but with a larger distortion due to the Jahn-Teller effect. This can be envisaged when comparing with the Co isostructural isolog Co(DHA)₂(DMF)₂ (A. Gelasco, *et al.*, 1997; Casabó *et al.*, 1987): the Cu—O_(DMF) bond length in (I), (2.446 (16) Å) is significantly longer than the corresponding Co—O_(DMF) distance, 2.168 (2) Å, while the equatorial bonds are slightly shorter. The coordination distances in (I) are in good agreement with those found in Cu(DHA)₂(DMSO)₂ (DMSO: dimethylsulfoxyde, Djedouani *et al.*, 2006).

The structure of (I) is different from the $Mn(DHA)_2(H_2O)_2$ one, in which one water molecule is at the axial position and the other at the equatorial position.

The dimethylformamide molecules are involved in intermolecular hydrogen bonding *via* weak C—H···O interactions. (Figure 2),

Experimental

To a solution of copper acetate monohydrate is added, with stirring a solution of dehydroacetic acid in absolute ethanol with a 1:2 stoichiometric ratio. Complex (I) precipitated after one hour. The precipitate was filtered and recrystallized by slow evaporation in a dimethylsulfoxide solution.

Refinement

H atoms were idealized (C-H range: 0.95-0.98 Å) and refined isotropically.

Figures

Fig. 1. *ORTEP* view of a selected part of the crystal structure of compound 2. The ellipsoids enclose 30% of the electronic density. Symmetry operators for generating equivalent positions: (i) -x, -y, -z.

Fig. 2. View of the crystal structure of $Cu(DHA)_2(DMF)_2$ (I) in the (b,c) plane. The hydrogen atoms have been omitted for clarity.

Bis(3-acetyl-6-methyl-2-oxo-2H-pyran-4- olato)bis(dimethylformamide)copper(II)

Crystal data	
$[Cu(C_8H_7O_4)_2(C_3H_7NO)_2]$	Z = 1
$M_r = 544.01$	$F_{000} = 283.00$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.501 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
a = 7.6894 (2) Å	Cell parameters from 4486 reflections
b = 8.5406 (2) Å	$\theta = 1.0 - 30.0^{\circ}$
c = 9.3858 (3) Å	$\mu = 0.97 \text{ mm}^{-1}$
$\alpha = 84.8700 \ (10)^{\circ}$	T = 173 (2) K
$\beta = 86.9640 \ (10)^{\circ}$	Prism, blue
$\gamma = 78.852 \ (2)^{\circ}$	$0.10\times0.10\times0.10~mm$
$V = 601.93 (3) \text{ Å}^3$	

Data collection

3021 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.050$
$\theta_{\text{max}} = 30.1^{\circ}$
$\theta_{\min} = 2.2^{\circ}$
$h = -10 \rightarrow 10$
$k = -12 \rightarrow 11$
$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.037$	$w = 1/[\sigma^2(F_o^2) + (0.0542P)^2 + 0.0974P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.103$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.05	$\Delta \rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$
3518 reflections	$\Delta \rho_{min} = -0.55 \text{ e } \text{\AA}^{-3}$
161 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.221 (11)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.0000	0.0000	0.0000	0.03279 (12)
01	-0.09598 (15)	-0.06122 (16)	0.18483 (12)	0.0368 (3)
O2	0.15683 (17)	-0.26020 (18)	0.54467 (13)	0.0438 (3)
03	0.41095 (18)	-0.1951 (2)	0.47529 (15)	0.0534 (4)
O4	0.21496 (15)	0.02621 (16)	0.08599 (13)	0.0375 (3)
O5	0.1369 (2)	-0.28176 (19)	-0.01498 (18)	0.0560 (4)
N1	0.3220 (2)	-0.47067 (19)	-0.13276 (18)	0.0420 (3)
C1	-0.0075 (2)	-0.1174 (2)	0.29462 (16)	0.0304 (3)
C2	-0.1011 (2)	-0.1903 (2)	0.41121 (18)	0.0379 (4)
H2	-0.2243	-0.1887	0.4047	0.045*
C3	-0.0181 (2)	-0.2601 (2)	0.52813 (18)	0.0381 (4)
C4	0.2594 (2)	-0.1858 (2)	0.44211 (18)	0.0367 (4)
C5	0.1755 (2)	-0.1125 (2)	0.31181 (16)	0.0298 (3)
C6	0.2740 (2)	-0.0303 (2)	0.20597 (17)	0.0318 (3)
C7	0.4565 (2)	-0.0019 (3)	0.2306 (2)	0.0502 (5)
H7A	0.4933	0.0685	0.1513	0.075*

supplementary materials

H7B	0.5402	-0.1044	0.2362	0.075*
H7C	0.4551	0.0485	0.3205	0.075*
C8	-0.0964 (3)	-0.3446 (3)	0.6534 (2)	0.0540 (5)
H8A	-0.0298	-0.4546	0.6676	0.081*
H8B	-0.2205	-0.3466	0.6361	0.081*
H8C	-0.0903	-0.2885	0.7391	0.081*
C9	0.2491 (2)	-0.3213 (2)	-0.1090 (2)	0.0417 (4)
H9	0.2869	-0.2382	-0.1697	0.050*
C10	0.4528 (3)	-0.5079 (3)	-0.2474 (3)	0.0623 (6)
H10A	0.4087	-0.5726	-0.3135	0.093*
H10B	0.5635	-0.5680	-0.2074	0.093*
H10C	0.4747	-0.4083	-0.2992	0.093*
C11	0.2675 (4)	-0.6042 (3)	-0.0473 (3)	0.0635 (6)
H11A	0.3720	-0.6746	-0.0060	0.095*
H11B	0.2091	-0.6645	-0.1080	0.095*
H11C	0.1847	-0.5638	0.0299	0.095*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.02832 (16)	0.0447 (2)	0.02637 (16)	-0.01107 (11)	-0.00577 (10)	0.00369 (11)
01	0.0273 (5)	0.0532 (8)	0.0289 (5)	-0.0080 (5)	-0.0048 (4)	0.0048 (5)
O2	0.0425 (7)	0.0554 (8)	0.0313 (6)	-0.0085 (6)	-0.0059 (5)	0.0095 (5)
O3	0.0409 (7)	0.0749 (11)	0.0439 (7)	-0.0139 (7)	-0.0169 (6)	0.0137 (7)
O4	0.0335 (6)	0.0486 (7)	0.0324 (6)	-0.0156 (5)	-0.0079 (4)	0.0073 (5)
O5	0.0567 (9)	0.0460 (8)	0.0641 (10)	-0.0085 (7)	0.0111 (7)	-0.0096 (7)
N1	0.0425 (8)	0.0368 (8)	0.0455 (8)	-0.0090 (6)	0.0026 (6)	0.0027 (6)
C1	0.0298 (7)	0.0340 (8)	0.0272 (7)	-0.0052 (6)	-0.0016 (5)	-0.0038 (6)
C2	0.0331 (8)	0.0478 (10)	0.0323 (8)	-0.0088 (7)	-0.0002 (6)	0.0004 (7)
C3	0.0397 (9)	0.0424 (10)	0.0310 (8)	-0.0072 (7)	0.0017 (6)	-0.0003 (7)
C4	0.0363 (8)	0.0410 (9)	0.0313 (8)	-0.0043 (7)	-0.0066 (6)	0.0017 (7)
C5	0.0300 (7)	0.0327 (8)	0.0268 (7)	-0.0053 (6)	-0.0055 (5)	-0.0012 (6)
C6	0.0295 (7)	0.0344 (8)	0.0323 (7)	-0.0071 (6)	-0.0066 (6)	-0.0020 (6)
C7	0.0373 (9)	0.0687 (14)	0.0480 (11)	-0.0236 (9)	-0.0146 (8)	0.0141 (9)
C8	0.0571 (12)	0.0634 (14)	0.0396 (10)	-0.0150 (10)	0.0045 (9)	0.0101 (9)
C9	0.0386 (9)	0.0372 (9)	0.0508 (10)	-0.0123 (7)	-0.0046 (8)	0.0008 (8)
C10	0.0601 (14)	0.0568 (14)	0.0621 (14)	0.0010 (10)	0.0158 (11)	0.0008 (11)
C11	0.0718 (15)	0.0436 (12)	0.0736 (16)	-0.0164 (10)	0.0133 (12)	0.0061 (11)

	Geometric	parameters	(Å,	9)
--	-----------	------------	-----	----

Cu1—O1	1.9181 (11)	C3—C8	1.486 (3)
Cu1—O4	1.9366 (12)	C4—C5	1.447 (2)
Cu1—O5	2.4462 (16)	C5—C6	1.433 (2)
Cu1—O1 ⁱ	1.9181 (11)	C6—C7	1.503 (2)
Cu1—O4 ⁱ	1.9366 (12)	C2—H2	0.9499
Cu1—O5 ⁱ	2.4462 (16)	C7—H7A	0.9793
O1—C1	1.2707 (19)	С7—Н7В	0.9802

O2—C3	1.362 (2)	С7—Н7С	0.9796
O2—C4	1.399 (2)	С8—Н8А	0.9805
O3—C4	1.208 (2)	С8—Н8В	0.9800
O4—C6	1.257 (2)	C8—H8C	0.9800
O5—C9	1.224 (2)	С9—Н9	0.9501
N1—C9	1.324 (2)	C10—H10A	0.9804
N1—C10	1.447 (3)	C10—H10B	0.9795
N1—C11	1.451 (3)	C10—H10C	0.9804
C1—C2	1.439 (2)	C11—H11A	0.9808
C1—C5	1.434 (2)	C11—H11B	0.9800
C2—C3	1.333 (2)	С11—Н11С	0.9800
Cu1…H11B ⁱⁱ	3.5934	C11···O4 ^{xi}	3.380 (3)
Cu1···H11B ⁱⁱⁱ	3.5934	С4…Н7С	2.8540
01…04	2.7325 (17)	C4···H7B	2.9629
O1…O5	3.040 (2)	C6···H8C ^{ix}	2.8916
O1…C6	2.926 (2)	C8····H11C ^{xii}	3.0797
O1····C7 ^{iv}	3.390 (2)	$C9 \cdots H8C^{x}$	2.9937
O1····C9 ⁱ	3.279 (2)	H2···O3 ^{iv}	2.8573
O1···O4 ⁱ	2.7189 (17)	H2···H7B ^{iv}	2.4278
O1···O5 ⁱ	3.175 (2)	H2…H8B	2.4503
O2…C10 ^v	3.367 (3)	H7A…H11A ⁱⁱ	2.5766
O2…C9 ^v	3.338 (2)	H7A…H9 ^{xiii}	2.4515
O3…C7	2.753 (3)	H7B…O1 ^{vii}	2.9016
O4…O1 ⁱ	2.7189 (17)	Н7В…ОЗ	2.5247
O4…O1	2.7325 (17)	H7B…C4	2.9629
04…05 ⁱ	3.190 (2)	H7B…H2 ^{vii}	2.4278
O4…O5	3.049 (2)	Н7С…ОЗ	2.4969
O4…C1	2.880 (2)	H7C…C4	2.8540
O4…C11 ⁱⁱ	3.380 (3)	H7C…O3 ^{viii}	2.7275
O5…O4 ⁱ	3.190 (2)	H8B…H2	2.4503
O5…C1	3.381 (2)	H8B…H10C ^{xiv}	2.5316
O5…O4	3.049 (2)	H8C···C9 ^v	2.9937
O5…O1	3.040 (2)	H8C…O4 ^{ix}	2.8797
O5…O1 ⁱ	3.175 (2)	H8C···C6 ^{ix}	2.8916
O1…H11B ⁱⁱⁱ	2.8143	H8C…H11C ^{xii}	2.5529
O1…H9 ⁱ	2.6870	H9…H10C	2.2342
O1…H7B ^{iv}	2.9016	H9…O1 ⁱ	2.6870
O3…H10A ^{vi}	2.7234	H9…H7A ^{xiii}	2.4515
O3…H7B	2.5247	H10A…H11B	2.5639
O3…H2 ^{vii}	2.8573	H10A····O3 ^{vi}	2.7234
O3…H7C ^{viii}	2.7275	H10B…H11A	2.5468
O3…H10C ^v	2.6667	H10C…O3 ^x	2.6667
O3…H7C	2.4969	H10C····H8B ^{xv}	2.5316

supplementary materials

O4…H8C ^{ix}	2.8797	Н10С…Н9	2.2342
O5…H11C	2.3680	H11A····H7A ^{xi}	2.5766
C2···C4 ^{ix}	3.577 (2)	H11A…H10B	2.5468
C4···C2 ^{ix}	3.577 (2)	H11B…Cu1 ^{xi}	3.5934
C6···C8 ^{ix}	3.568 (3)	H11B…H10A	2.5639
C7…O3	2.753 (3)	H11B…Cu1 ⁱⁱⁱ	3.5934
C7…O1 ^{vii}	3.390 (2)	H11B…O1 ⁱⁱⁱ	2.8143
C8···C6 ^{ix}	3.568 (3)	H11C…O5	2.3680
$C9\cdots O2^{x}$	3 338 (2)	H11CC8 ^{xii}	3 0797
C_{10}^{X}	3 367 (3)		2 5529
01 0.1 0.4	5:507 (5)		2.332)
01 - Cu1 - 04	90.29 (5) 87.44 (6)	C4 - C5 - C6	119.53 (14)
01 - Cu1 - 03	87.44 (0) 180.00	04 - 6 - 63	123.20 (14)
	180.00		114.21 (15)
Ol—Cul—O4 ¹	89.71 (5)	C5-C6-C7	122.52 (15)
$01-Cu1-05^{1}$	92.56 (6)	05—C9—N1	125.16 (17)
04—Cu1—O5	87.33 (5)	С1—С2—Н2	119.38
O1 ¹ —Cu1—O4	89.71 (5)	С3—С2—Н2	119.39
$O4$ — $Cu1$ — $O4^1$	180.00	С6—С7—Н7А	109.52
04—Cu1—O5 ⁱ	92.67 (5)	С6—С7—Н7В	109.45
O1 ⁱ —Cu1—O5	92.56 (6)	С6—С7—Н7С	109.46
O4 ⁱ —Cu1—O5	92.67 (5)	H7A—C7—H7B	109.47
O5—Cu1—O5 ⁱ	180.00	H7A—C7—H7C	109.50
O1 ⁱ —Cu1—O4 ⁱ	90.29 (5)	Н7В—С7—Н7С	109.42
O1 ⁱ —Cu1—O5 ⁱ	87.44 (6)	С3—С8—Н8А	109.43
O4 ⁱ —Cu1—O5 ⁱ	87.33 (5)	С3—С8—Н8В	109.48
Cu1—O1—C1	126.09 (11)	С3—С8—Н8С	109.46
C3—O2—C4	122.47 (13)	H8A—C8—H8B	109.47
Cu1—O4—C6	128.72 (11)	H8A—C8—H8C	109.43
Cu1—O5—C9	120.37 (13)	H8B—C8—H8C	109.55
C9—N1—C10	121.90 (17)	О5—С9—Н9	117.39
C9—N1—C11	120.71 (18)	N1—C9—H9	117.45
C10-N1-C11	117.35 (18)	N1-C10-H10A	109.46
01—C1—C2	116.55 (14)	N1-C10-H10B	109.52
01—C1—C5	125.50 (14)	N1-C10-H10C	109.50
C2—C1—C5	117.94 (14)	H10A—C10—H10B	109.46
C1—C2—C3	121.23 (15)	H10A—C10—H10C	109.40
O2—C3—C2	121.52 (15)	H10B-C10-H10C	109.48
O2—C3—C8	111.62 (15)	N1—C11—H11A	109.47
C2—C3—C8	126.86 (16)	N1—C11—H11B	109.47
02—C4—O3	113.66 (15)	N1—C11—H11C	109.50
02-C4-C5	117 70 (14)	H11A—C11—H11B	109 48
03-04-05	128 63 (16)	H11A—C11—H11C	109.10
C1 - C5 - C4	110 01 (14)	H11B_C11_H11C	109.45
C1 - C5 - C6	121 40 (14)	inits chi inite	102.77
\cdots			

O4—Cu1—O1—C1	-22.49 (15)	C2—C1—C5—C6	-174.68 (16)	
O4 ^{xvi} —Cu1—O1—C1	157.51 (15)	O1—C1—C5—C4	-178.35 (16)	
O1—Cu1—O4—C6	19.61 (16)	C2-C1-C5-C4	2.3 (2)	
O1 ^{xvi} —Cu1—O4—C6	-160.39 (16)	O3—C4—C5—C6	-3.7 (3)	
Cu1—O1—C1—C5	15.0 (2)	O2—C4—C5—C6	177.92 (15)	
Cu1—O1—C1—C2	-165.66 (12)	O3—C4—C5—C1	179.2 (2)	
O1—C1—C2—C3	176.54 (17)	O2—C4—C5—C1	0.8 (2)	
C5—C1—C2—C3	-4.1 (3)	Cu1—O4—C6—C5	-8.1 (3)	
C1—C2—C3—O2	2.5 (3)	Cu1—O4—C6—C7	172.88 (13)	
C1—C2—C3—C8	-177.56 (19)	C1—C5—C6—O4	-8.3 (3)	
C4—O2—C3—C2	1.0 (3)	C4—C5—C6—O4	174.68 (16)	
C4—O2—C3—C8	-178.96 (18)	C1—C5—C6—C7	170.61 (18)	
C3—O2—C4—O3	178.73 (17)	C4—C5—C6—C7	-6.4 (3)	
C3—O2—C4—C5	-2.6 (3)	C10—N1—C9—O5	179.3 (2)	
O1—C1—C5—C6	4.6 (3)	C11—N1—C9—O5	1.8 (3)	

Symmetry codes: (i) -x, -y, -z; (ii) x, y+1, z; (iii) -x, -y-1, -z; (iv) x-1, y, z; (v) x, y, z+1; (vi) -x+1, -y-1, -z; (vii) x+1, y, z; (viii) -x+1, -y, -z+1; (ix) -x, -y, -z+1; (x) x, y, z-1; (x) x, y, z-1; (xi) x, y-1, z; (xii) -x, -y-1, -z+1; (xiii) -x+1, -y, -z; (xiv) x-1, y, z+1; (xv) x+1, y, z-1; (xvi) -x, -y, -z.

